t-test

Dvouvýběrový t-test

V minulém článku jsme otevřeli problematiku dvouvýběrových testů, tj. testů, které mezi sebou porovnávají dva statistické soubory. Konstatovali jsme, že existují tři varianty testu a každý má určené předpoklady, při kterých jej lze použít. Nyní se budeme zabývat situací, kdy máme dva soubory, přičemž pozorování z obou souborů nelze spárovat. Soubory tedy mohou mít i odlišný počet pozorování. Předpokládáme však, že soubory mají shodné rozptyly. V takovém případě použijeme dvouvýběrový t-test, někdy též označovaný jako dvouvýběrový Studentův test.

Soubor se všemi výpočty naleznete zde.

Levostranný dvouvýběrový t-test

Abychom si přesně ukázali odlišnost od párového t-testu, vyjdeme ze zadání podobného tomu minulému: Máme data o průměrném počtu vyrobených výrobků pracovníky ve dvou různých závodech, přičemž v jednom ze závodů jsou testovány nové výrobní procesy. Vedení společnosti potřebuje ověřit, zda nové výrobní postupy zvýšily produktivitu práce, a v závislosti na tom implementuje tyto postupy v dalších závodech. Ověřte na \alpha = 5 % hypotézu, že v závodě s novými výrobními postupy vyrobí pracovníci v průměru více výrobků, než v závodě s původními postupy, přičemž předpokládáme, že rozptyl průměrného počtu výrobků je v obou závodech stejný. Vedení v minulosti statisticky ověřilo, že před změnou procesů byli pracovníci v obou závodech v průměru stejně výkonní.

Protože porovnáváme dva různé závody, nemůžeme pozorování nijak spárovat. Naopak předpokládáme shodný rozptyl hodnot, proto můžeme použít dvouvýběrový t-test.

Soubor X_1 obsahuje pozorování ze závodu se starými postupy a soubor X_2 pozorování ze závodu s upravenými postupy. Příslušné střední hodnoty pak označíme \mu_{X_1}\mu_{X_2}. Nyní můžeme formulovat nulovou a alternativní hypotézu:

  • H_0: \mu_{X_1} = \mu_{X_2} \, . (Střední hodnota obou souborů je stejná.)
  • H_1: \mu_{X_1} < \mu_{X_2} \, . (Střední hodnota prvního souboru je nižší.)

Alternativní hypotéza nám tedy říká, že pracovníci vyrábějící podle nových postupů jsou v průměru výkonnější.

Definujme si statistiku testu T jako

T = \frac{\bar{X_1} - \bar{X_2}}{s_p \cdot \sqrt{\frac{1}{n1} + \frac{1}{n2}}} \, ,

kde n_1n_2 jsou rozsahy obou souborů a s_p určíme ze vzorce

s_p = \frac{(n_1 - 1)s^2_{X_1} + (n_2 - 1)s^2_{X_2}}{n_1 + n_2 - 2} \, ,

kde s^2_{X_1}s^2_{X_2} jsou výběrové rozptyly obou souborů. Statistika T má samozřejmě Studentovo rozdělení a kritický obor určíme ze vztahu

W = ( - \infty,  t_{\alpha} (n_1 + n_2 - 2) \rangle \, ,

Dvouvýběrový t-test můžeme v Excelu opět provést několika způsoby:

  • použitím doplňku Analýza dat,
  • použitím funkce T.TEST (nebo TTEST),
  • použitím funkcí pro kvantilovou a distribuční funkci Studentova rozdělení.

Modelová data najdete na obrázku níže, rozsah dat je n_1 = 40 n_2 = 30.

dvouvýběrový t-test data

Výpočet s využitím doplňku Analýza dat

Začneme s využitím doplňku Analýza dat. Ten spustíme kliknutím na tlačítko Analýza dat na panelu Data. Vybereme možnost Dvouvýběrový t-test s rovností rozptylů. Do políček 1. soubor a 2. soubor označíme umístění našich souborů. Pokud označíme i záhlaví tabulky, zaškrtneme možnost Popisky. V poli Alfa necháme výchozí hodnotu 0,05 a do pole Výstupní oblast vložíme hranici oblasti, do které budou vloženy výsledky.

dvouvýběrový t-test analýza dat

Výsledky pro naše data jsou na obrázku níže. Hodnota statistiky je pro oba typy testu stejná a najdeme ji v řádku t Stat, v našem případě tedy T = -2{,}8239. Při jednostranném testu nás dále zajímají řádky, které jsou označeny (1).

dvouvýběrový t-test analýza dat 2

Řádek P(T<=t) (1) obsahuje p-hodnotu testu. Opět ale platí, že na tuto hodnotu si musíme dát pozor, protože nemusí vždy odpovídat našemu zadání. V doplňku totiž neurčujeme alternativní hypotézu. Excel vrací tu ze dvou možných p-hodnot, která je menší než 0,5. V našem případě (a obecně v případě záporné hodnoty statistiky, resp. v případě vyšší hodnoty průměru prvního souboru) Excel vrací p-hodnotu pro levostranný t-test, což odpovídá našemu zadání. p-hodnota testu je tedy T = 0{,}0031. V posledním označeném řádku nalezneme hranici kritického oboru. Opět platí, že hranice je zobrazena v absolutní hodnotě. V našem případě máme levostranný test, odsekáváme tedy rozdělení statistiky zleva. Protože Studentovo rozdělení je symetrické kolem nuly, stačí k zobrazené hodnotě připsat minus, tj. kritický obor se nachází v intervalu:

W = ( - \infty,  - 1,6676 \rangle \, .

Porovnání t-testu a z-testu

V předcházejících článcích jsme rozebírali z-test a t-test. Oba testy slouží k otestování hypotézy o střední hodnotě a liší se pouze předpokladem o znalosti rozptylu. Nabízí se ale otázka, k čemu vlastně máme dva testy? Jakou výhodu vlastně přináší znalost rozptylu? Na to se nyní podíváme.

U obou dvou testů můžeme testovat hypotézy na stejných hladinách významnosti. Ať už tedy provedeme test pomocí z-testu nebo t-testu, můžeme si předem stanovit, že pravděpodobnost chyby 1. druhu (neoprávněného zamítnutí H_0 ) je například \alpha = 5 % . Neznalost rozptylu se ale projeví v pravděpodobnosti chyby 2. druhu, neboli v síle testu. V případě využití t-testu máme větší pravděpodobnost, že nezamítneme neplatnou H_0 .

Ukažme si to na příkladu oboustranného testu. Předpokládejme stejné hypotézy jako v předchozích článcích, tj.

  • H_0: \mu = 190 \, ,
  • H_1: \mu \neq 190 \, .

Vygenerujeme si soubor pomocí generátoru náhodných čísel. Ten nám vygeneruje čísla s požadovanými vlastnostmi. Budeme chtít data se střední hodnotou \mu = 190,35 a směrodatnou odchylkou \sigma = 0,5. Víme tedy, že nulová hypotéza neplatí. Pokud tedy nulovou hypotézu při testu zamítneme, bude náš výsledek správný. V opačném případě se dopouštíme chyby 2. druhu.

t-test-random-gen.PNG

Na obrázku níže máte vygenerovaná data a výsledky provedených testů.

t-test vs z-test

p-hodnota z-testu je 0,0196, p-hodnota t-testu je 0,1405. Na hladině významnosti \alpha = 5 % bychom tedy nulovou hypotézu zamítli pouze při použití z-testu. V případě použití t-testu bychom se dopustili chyby 2. druhu.

Soubor s výpočty si můžete stáhnout zde.

Na základě jednoho příkladu ale nejde vyvozovat nějaké obecnější závěry. Zkusme tedy komplexnější experiment. Využijeme soubor náhodných čísel, který jsme vytvořili pro analýzu síly testu z-testu.

T-test a jeho využití

Zásadním omezením z-testu, který jsme si popisovali minule, je nutnost znát rozptyl testovaného souboru. V realitě velikost rozptylu velmi často neznáme, a tak se musíme spokojit s jeho odhadem. V takovém případě musíme využít určitou “modifikaci” z-testu, která se nazývá t-test.

Soubor s daty i výpočty si můžete stáhnout zde: t-test.

Začněme s oboustranným t-testem. Uvažujeme následující příklad: Máme zařízení, které vyrábí součástku určité délky. Zařízení má určitou chybovost, jejíž přesnou velikost neznáme. Chyby mají normální rozdělení. Zařízení bylo nastaveno pracovníkem a my chceme ověřit, že pracovník nastavil správnou délku součástky, tj. 190 mm. Pro ověření jsme vybrali a přeměřili náhodný soubor dvaceti součástek.

Obecné principy testování hypotéz, které jsme si popsali v článku o z-testu, zůstávají v platnosti. Definujeme si tedy nulovou a alternativní hypotézu:

  • H_0: \mu = 190 \, \mathrm{mm}. (Slovně: Střední hodnota statistického souboru je 190 mm.)
  • H_0: \mu \neq 190 \, \mathrm{mm}. (Střední hodnota statistického souboru je není 190 mm.)

Statistiku získáme ze vzorce

t = \frac{\bar{x} - \mu_0}{s} \sqrt{n} \, ,

kde \bar{x} je průměr našeho vzorku, \mu_0 je teoretická (testovaná) střední hodnota, a n je rozsah náhodného výběru. Proměnná s je odhad rozptylu základního souboru a pro tento odhad využijeme výběrový rozptyl

s = \frac{\sum\limits^{n}_{i=1} (x_i -\bar{x})}{n-1} \, ,

kde x_i je i-tá hodnota v našem výběru. Jmenovatel zlomku může být pro někoho matoucí, protože bychom spíše očekávali hodnotu n. Má to však svůj dobrý důvod. Pokud bychom do jmenovatele umístili n, pak střední hodnota našeho odhadu by byla menší, než skutečná hodnota rozptylu. Blíže to popíšu v nějakém z dalších článků.

Naše statistika t nemá tentokrát normované rozdělení, ale má takzvané Studentovo neboli t rozdělení. Toto rozdělení má jeden parametr, který značíme \nu . V našem případě platí vztah

\nu = n - 1 \, .

t rozdělení má podobné vlastnosti jako normované normální: jeho střední hodnota je 0 a je symetrické kolem 0. Čím vyšší je hodnota parametru \nu , tím více se distribuční funkce t rozdělení blíží normovanému normálnímu. Často se uvádí, že u t-testu můžeme pro \nu > 30 použít normované normální rozdělení. Pokud však i pro tyto hodnoty použijeme t rozdělení, nejedná se o chybu.

Kvantilvou funkci t rozdělení s (\nu) stupni volnosti budeme značit  t_{p} (\nu). Kritický obor testu určíme ze vzorce

W = ( - \infty, t_{\frac{\alpha}{2}} \left(n-1 \right) \rangle \cup \langle t_{1-\frac{\alpha}{2}} \left( n - 1 \right), \infty ) \, ,

kde \alpha značí hladinu významnosti testu.

Nyní již víme vše, co potřebujeme, a můžeme se vrhnout na provedení testu v Excelu.

Oboustranný t-test v Excelu

Od verze 2010 obsahuje Excel přepracovanou sadu funkcí pro provádění statistických výpočtů. Používáte-li tedy verzi 2010 a vyšší, doporučuji vám tyto novější funkce využívat, protože jejich použití je v řadě případů jednodušší. Uživatelé starších verzí mají k dispozici pouze starší sadu funkcí. My si ukážeme postup pro obě varianty.

Náš testovací soubor máme uložený v buňkách A1 až A20. Test provedeme na \alpha = 5 % , tuto hodnotu máme v buňce D6.

t-test data 2