Trip to the USA – part II

As I promised to you, I am presenting the rest of my photos from my USA trip. I hope you will like it.

The Statue of Liberty is maybe the most famous symbol of New York. Maybe not so many people know that it was built in France. It was a gift for Americans from Frenchmen. The statue is on Liberty Island and you can go there easily by a ferry. You can buy tickets to a pedestal of the statue and it is also possible to go on a top of the statue but it is necessary to buy a ticket in a several months advance.

DSC03693

This is a view from the pedestal. If you think that a wind is cold and strong on the ferry, it is nothing comparing to the wind on the pedestal. But of course, it is 40 meters high. Then you can go the Ellis Island to Museum of Immigration. You can there, for example, check if some of your ancestors immigrated to America.

DSC03711

Manhattan is connected with Long Island by two beautiful bridges – Brooklyn Bridge (the closer one on the photo) and Manhattan Bridge. You can walk across both of them.

DSC03723

First time I walked over Brooklyn Bridge. There is a nice walk path over it. This is a view of Manhattan from the beginning of the path.

DSC03732

This is little further. You can see iron ropes which are parts of the construction of the bridge.

DSC03736

This photo is really from New York, despite it looks like a photo of Arc de Triomphe in Paris. It is Washington Square Arch.

DSC03741

The next day I went from Brooklyn to Manhattan over the Manhattan Bridge. The view of Manhattan from this bridge is really amazing.

DSC03755

That was the last photo from New York because I went to Washington in the afternoon. It is a shame that I didn’t have time to see many interesting places – National Museum of Mathematics for example. But I take it as a reason to visit New York once more.

Washington also has an amazing park close to the centre. It is called Rock Creek Park. It is far less famous than Central Park. I must admit that I hadn’t heard about it before my trip. But it’s also really beautiful.

DSC03770

DSC03771

This is a monument in front of Union Station – the main railway and bus station of Washington.

DSC03778

The United States Capitol is (with White House) symbol of Washington. An almost every time we see a reporter in news speaking from Washington, he has The Caption in the background. The building is really extremely large and impressive.

DSC03788

DSC03790

If you want to see the Supreme Court of the United States, just cross a road in front of the Capitol. Just make sure you are crossing over a zebra crossing. Otherwise, you will be admonished by a policeman as I was.

DSC03792

This is how a typical Washington street look likes – I really liked lines of trees between houses and roads.

DSC03830

Quotations of Martin Luther King on black notices are very common in Washington – plenty people have them in gardens in front of their houses.

DSC03836

The Washington Monument had been wor’s tallest structure till 1889. It is 169 meters high and also very impressive.

DSC03866

Another building with large and tall grey columns National Gallery of Art. There are a lot of beautiful painting in the gallery and entrance is for free.

DSC03871

I would recommend you to visit the National World War II Memorial at night. Lights, a fountain and columns in the background create a very unique experience.

DSC03900

This place reminds another important American presient – it is the Lincoln Memorial.

DSC03906

And, of course, this is the White House.

DSC03920

And finally, few photos from Philadelphia. This is the City Hall.

DSC03936

And here is rest of my photos. I’ve planned extremely little time to spend in Philadelphia. I am definitely planning to visit this amazing city once more because this time I missed a lot of interesting and important places.

DSC03946

DSC03948

DSC03951

DSC03956

Trip to the USA – part I

I made a trip to the USA from 6th to 15th November 2017. Here you can see some photos from my trip with short comments. Because I have made a lot of photos and I would like to share a lot of them with you, I split the article into two parts.You can find all my photos in my Flicker album.

This is my first view of Manhattan after exiting the subway on Wall Street station.

DSC03330

Federal Hall – one of the important buildings in American history.

DSC03333

9/11 was also a key point of history for the whole world. You can find a lot of information about this event in 9/11 museum. Just keep in mind it is a sad exhibition about tragic the event.

DSC03358

I knew about The Trump Building, but I didn’t know it is just next to Federal Hall.

DSC03364

Jednovýběrový test na rozptyl

Články o statistice se postupně přesunují na nový web: https://statistikajednoduse.cz/. Tento konkrétní článek najdete zde: https://statistikajednoduse.cz/jednovyberovy-test-na-rozptyl/

V minulých článcích jsme se zabývali testy o střední hodnotě. Střední hodnota je nejznámějším ukazatelem polohy. Ukazatele polohy charakterizují určitou úroveň hodnot v souboru. Dále se ale můžeme zajímat o to, nakolik jsou hodnoty souboru vzájemně diverzifikované. Například průměrný počet bodů z testu ve škole popisuje průměrnou úroveň znalostí studentů, rozptyl známek nám pak říká, jak velké jsou rozdíly mezi studenty. Pokud je rozptyl velký, znamená to, že jednotliví studenti se vzájemně velmi liší svými vědomostmi. U sériově vyráběných součástek výrobce často požaduje minimální rozptyl, tj. jednotlivé výroby by se měly co nejméně lišit svými rozměry, hmotností atd.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Uvažujeme následující příklad: Máme zařízení, pomocí kterého vyrábíme součástky průměrné délky 190 mm. Výrobce garantuje, že maximální rozptyl délky součástky je 0,09 mm a víme, že odchylky od nastavené délky mají normální rozdělení. Ověřte na hladině významnosti \alpha = 0{,}05, zda rozptyl délky překračuje hranici zadanou výrobcem.

Dle zadání bychom měli provést jednostranný (pravostranný) test. Reálné příklady oboustranného testu by se hledaly poměrně složitě. Většinou požadujeme větší nebo naopak menší variabilitu, než je daná hranice.

Formulujme nejprve hypotézy testu:

  • H_0: \sigma^2 = 0{,}09 \, \mathrm{mm} \, . (Slovně: Rozptyl délky je 0,09 mm.)
  • H_1: \sigma^2 > 0{,}09 \, \mathrm{mm} \, . (Slovně: Rozptyl délky je větší než 0,09 mm.)

Statistiku testu $latex T $ vypočteme ze vztahu

T = \frac{(n - 1) s^2}{\sigma_0^2} \, ,

kde n je rozsah výběru, \sigma_0^2 je teoretický (testovaný, hypotetický) rozptyl a s je výběrový rozptyl. Statistika je tedy poměrem teoretického a výběrového rozptylu, kterou násobíme rozsahem výběru. Jestliže je tedy například výběrový rozptyl výrazně větší než teoretický, má statistika relativně vysokou hodnotu. Naopak relativně nízké hodnoty svědčí o výrazně menším výběrovém rozptylu ve srovnání s teoretickým.

Statistika T má \chi^2 rozdělení. Toto rozdělení má jeden parametr, který nazýváme počet stupňů volnosti. Stupeň volnosti se rovná počtu pozorování sníženému o jedničku. Kritický obor tedy určíme pomocí kvantilů \chi^2 jako

W = \langle \chi^2_{1 - \alpha} \left( n - 1 \right), \infty ) \, .

Provedení testu v Excelu

Pro provedení testu si vygenerujeme náhodný soubor o velikosti n = 20. Soubor si vygenerujeme takový, že směrodatná odchylka \sigma^2 = 0{,}3 (rozptyl \sigma^2 = 0{,}09), tj. ve skutečnosti bude platit nulová hypotéza.

test-rozptyl data

Na následujícím obrázku si můžete prohlédnout data i výsledky výpočtů. Vidíme, že výsledek testu správný, tj. hypotézu H_0 jsme nezamítli.

test-rozptyl data a vysledky

Opět zde narážíme na rozdíly mezi staršími a novějšími verzemi Excelu. Provedeme si výpočet v obou verzích. Opět platí, že postup pro starší verzi je možné provést i v novější verzi.

Autumn is coming

The autumn is coming to the Czech Republic. Today we probably had one of the very last warm days of this year. I went out and made some photos. I wanted to prove you that autumn is not depressive part of the year. In the contrary, it is very colourful and beautiful. If you don’t believe me, look at the photos.

DSC03215

DSC03217

DSC03218

DSC03221

DSC03224

DSC03245

DSC03247

Výběrový rozptyl podruhé

Články o statistice se postupně přesunují na nový web: https://statistikajednoduse.cz/. Tento konkrétní článek najdete zde: https://statistikajednoduse.cz/vyberovy-rozptyl-podruhe/

Minule jsem se zmínil o rozdílu mezi výběrovým a populačním rozptylem. V článku však chyběl důkaz nebo jakékoli vysvětlení, proč tento rozdíl existuje. Tomu se budeme věnovat nyní.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Nejprve si ale odvodíme takzvaný výpočetní tvar pro rozptyl. Víme, že populační rozptyl se spočte pomocí vztahu

\sigma^2_X = \mathrm{E} \left[ X - \mathrm{E} \left(X \right) \right]^2 \, .

Pro výpočet hodnoty rozptylu pomocí kalkulačky je tento vzorec poměrně nepraktický, protože pro každou hodnotu souboru je potřeba zadat rozdíl mezi danou hodnotou a střední hodnotou. Můžeme ale provést následující úpravy:

$latex \begin{aligned}
\sigma^2_X &= \mathrm{E} \left[ X – \mathrm{E} \left(X \right) \right]^2 \\
&= \mathrm{E} \left[ X^2 – 2 X \cdot \mathrm{E} \left(X \right) + \mathrm{E} \left(X \right) \right] \\
&= \mathrm{E} \left( X^2 \right) – \mathrm{E} \left[ 2 X \cdot \mathrm{E} \left(X \right) \right] + \left[ \mathrm{E} \left(X \right) \right]^2 \\
&= \mathrm{E} \left( X^2 \right) – 2 \left[ \mathrm{E} \left(X \right) \right]^2 + \left[ \mathrm{E} \left(X \right) \right]^2 \\
&= \mathrm{E} \left( X^2 \right) – \left[ \mathrm{E} \left(X \right) \right]^2
\end{aligned}\, . $

Výsledný výpočetní tvar pro rozptyl má tvar

\sigma^2_X = \mathrm{E} \left( X^2 \right) - \left[ \mathrm{E} \left(X \right) \right]^2 = \mathrm{E} \left( X^2 \right) - \mu_X^2  \, .

Stačí tedy vypočítat součet druhých mocnin hodnot souboru a odečíst od něj druhou mocninu součtu hodnot, což rychlost výpočtu podstatně sníží. Tento vztah ještě využijeme níže.

Nyní se ale vraťme k výběrovému rozptylu. Jestliže máme k dispozici pouze náhodný výběr z nějakého souboru (a nikoli všechny hodnoty souboru), zpravidla nebudeme znát střední hodnotu základního souboru. Tuto střední hodnotu musíme odhadnout pomocí aritmetického průměru. Dokažme si nejprve, že aritmetický průměr je nezkresleným odhadem střední hodnoty, tj. určíme si střední hodnotu aritmetického průměru:

\mathrm{E} \left( \bar{X} \right) = \mathrm{E} \left( \frac{1}{n} \sum\limits_{i=1}^n x_i \right) = \frac{1}{n} \sum\limits_{i=1}^n \mathrm{E} \left( x_i \right) = \frac{1}{n} \cdot n \cdot \mu = \mu \, .

Využíváme dvou známých vlastností střední hodnoty. Při násobení náhodné veličiny konstantou c \in \mathbb{R}  platí, že

\mathrm{E} \left( c \cdot X \right) = c \cdot \mathrm{E} \left( X \right) \, .

A dále střední hodnota součtu náhodných veličin se rovná součtu středních hodnot náhodných veličin:

\mathrm{E} \left( X + Y \right) = \mathrm{E} \left( X \right) + \mathrm{E} \left( Y \right) \, .

Střední hodnota aritmetického průměru je tedy skutečně střední hodnotou náhodného výběru, tím pádem je dokázáno, že takový odhad je nezkreslený. Vraťme se nyní ke vzorci pro populační rozptyl:

\sigma^2_X = \frac{1}{n} \sum\limits_{i=1}^{n} \left[ x_i - \mathrm{E} \left(X \right) \right]^2 \, .

Namísto střední hodnoty nyní do vzorce dosadíme aritmetický průměr. Takto upravenou statistiku si označíme jako \left(s^{'} \right)^2_X :

\left(s^{'} \right)^2_X = \frac{1}{n} \sum\limits_{i=1}^{n} \left( x_i - \bar{X} \right)^2 \, .

Nyní použijeme známý vzorec (a + b)^2 = a^2 + 2ab + b^2 a provedeme několik jednoduchých úprav.

$latex \begin{aligned}
\left(s^{‘} \right)^2_X &= \frac{1}{n} \sum\limits_{i=1}^{n} \left( x_i^2 – 2 x_i \bar{X}  + \bar{X}^2 \right) \\
&= \frac{1}{n} \sum\limits_{i=1}^{n} x_i^2 – 2 \bar{X} \frac{\sum\limits_{i=1}^{n}x_i}{n}  + \frac{n \cdot \bar{X}^2}{n} \\
&= \frac{1}{n} \sum\limits_{i=1}^{n} x_i^2 – 2 \bar{X} \cdot \bar{X} + \bar{X}^2 \\
&= \frac{1}{n} \sum\limits_{i=1}^{n} x_i^2 – \bar{X}^2 \\
&= \frac{1}{n} \sum\limits_{i=1}^{n} x_i^2 – \left( \frac{1}{n} \sum\limits_{i=1}^{n} x_i \right)^2
\end{aligned}\, . $

V případě druhého sčítance na posledním řádku provádíme součet vzájemných násobků hodnot v náhodném výběru. Výraz lze zapsat též jako

\frac{1}{n^2} \left( \sum\limits_{i=1}^{n} x_i \right) \left( \sum\limits_{i=1}^{n} x_i \right) = \frac{1}{n^2} \left( \sum\limits_{i=1}^{n} x_i^2 +  \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} x_i x_j \right) \, ,

protože rozlišujeme mezi případy, kdy jsou mezi sebou násobeny dva různé náhodné výběry, a kdy je násobena tatáž realizace náhodného výběru. Tím jsme získali upravený vzorec pro statistiku \left(s^{'} \right)^2_X :

\left(s^{'} \right)^2_X = \frac{1}{n} \sum\limits_{i=1}^{n} x_i^2 - \frac{1}{n^2} \left( \sum\limits_{i=1}^{n} x_i^2 +  \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} x_i x_j \right) \, .

Abychom si ukázali, jak je statistika \left(s^{'} \right)^2_X  zkresleným odhadem rozptylu, určíme si její střední hodnotu:

$latex \begin{aligned}
\mathrm{E} \left[ \left( s^{‘} \right)^2_X \right] &= \mathrm{E} \left[ \frac{1}{n} \sum\limits_{i=1}^{n} x_i^2 – \frac{1}{n^2} \left( \sum\limits_{i=1}^{n} x_i^2 +  \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} x_i x_j \right) \right] \\
&= \frac{1}{n} \sum\limits_{i=1}^{n} \mathrm{E} \left( x_i^2 \right) – \frac{1}{n^2} \left[ \sum\limits_{i=1}^{n} \mathrm{E} \left( x_i^2 \right) + \sum\limits_{\substack{ i=1 \\ i \neq j}}^{n} \sum\limits_{j=1}^{n} \mathrm{E} \left( x_i x_j \right) \right]
\end{aligned}$

Uvažujeme, že jednotlivé realizace náhodného výběru jsou vzájemně nezávislé, tj. hodnoty x_i x_j jsou pro i \neq j nezávislé. V tom případě pak platí vztah

\mathrm{E} \left( x_i x_j \right) = \mathrm{E} \left( x_i \right) \mathrm{E} \left( x_j \right) \, .

Protože se ale v obou případech jedná o náhodný výběr ze stejného souboru se střední hodnotou \mu, platí dokonce

\mathrm{E} \left( x_i x_j \right) = \mathrm{E} \left( x_i \right) \mathrm{E} \left( x_j \right) =  \mu \cdot \mu = \mu^2 \, .

Dále máme v rovnici výraz \mathrm{E} \left( x_i^2 \right) . Upravíme-li si rovnici pro výpočetní tvar rozptylu, kterou jsme odvodili výše, zjistíme, že

\mathrm{E} \left( X^2 \right) = \sigma^2_X + \mu_X^2 \, .

Dosaďme tedy za oba výrazy a pokračuje v odvození

$latex \begin{aligned}
\mathrm{E} \left[ \left( s^{‘} \right)^2_X \right] &=
\frac{1}{n} \sum\limits_{i=1}^{n} \mathrm{E} \left( x_i^2 \right) – \frac{1}{n^2} \left[ \sum\limits_{i=1}^{n} \mathrm{E} \left( x_i^2 \right) + \sum\limits_{\substack{ i=1 \\ i \neq j}}^{n} \sum\limits_{j=1}^{n} \mathrm{E} \left( x_i x_j \right) \right] \\
&=
\frac{1}{n} \sum\limits_{i=1}^{n} \left( \sigma^2_X + \mu_X^2 \right) – \frac{1}{n^2}  \sum\limits_{i=1}^{n} \left( \sigma^2_X + \mu_X^2 \right) + \sum\limits_{\substack{ i=1 \\ i \neq j}}^{n} \sum\limits_{j=1}^{n} \mu^2 \\
&= \left( \sigma^2_X + \mu_X^2 \right) – \frac{n}{n^2} \left( \sigma^2_X + \mu_X^2 \right) -\frac{(n^2 – n)}{n^2}  \mu^2 \\
&= \sigma^2_X \left( 1 – \frac{n}{n^2} \right) + \mu_X^2 \left[ 1 – \frac{n}{n^2} + \frac{(n^2 – n)}{n^2} \right] \\
&= \sigma^2_X \frac{n \left( n – 1 \right) }{n^2} + \mu_X^2 \frac{n^2 – n – n^2 + n}{n^2}\\
&= \sigma^2_X \frac{ n – 1}{n}
\end{aligned}$

Vidíme tedy, že střední hodnota statistiky \left(s^{'} \right)^2_X  je

\left[ \left( s^{'} \right)^2_X \right] = \sigma^2_X \frac{ n - 1}{n} \, . 

Abychom tedy získali nezkreslený odhad rozptylu, museli bychom statistiku \left(s^{'} \right)^2_X  násobit výrazem \frac{n}{n -1} . Na základě této myšlenky je pak odvozen vzorec pro výběrový rozptyl. Výraz \frac{n}{n -1} je někdy nazýván jako Besselova korekce. Výraz \frac{n}{n -1} konverguje k 1, pro velmi velké náhodné výběry je rozdíl mezi statistikami zanedbatelný. Protože střední hodnota statistiky \left(s^{'} \right)^2_X  konverguje k hodnotě rozptylu, je asymptoticky nestranným odhadem rozptylu.

K čemu slouží rozptyl a jak ho odhadujeme

Články o statistice se postupně přesunují na nový web: https://statistikajednoduse.cz/. Tento konkrétní článek najdete zde: https://statistikajednoduse.cz/k-cemu-slouzi-rozptyl-a-jak-ho-odhadujeme/.

V minulých článcích jsme se zabývali testy o střední hodnotě. Střední hodnota je nejznámějším ukazatelem polohy. Ukazatele polohy charakterizují určitou úroveň hodnot v souboru. Dále se ale můžeme zajímat o to, nakolik jsou hodnoty souboru diverzifikované neboli vzájemně rozdílné. To určujeme pomocí ukazatelů variability. Například průměrný počet bodů z testu ve škole popisuje průměrnou úroveň znalostí studentů. Rozptyl bodů nám pak říká, jaké jsou mezi jednotlivými studenty rozdíly. Pokud je rozptyl velký, znamená to, že jednotliví studenti se vzájemně velmi liší svými vědomostmi. Čím je rozptyl nižší, tím jsou si jednotliví studenti svými výkony bližší.

Ukazatelů variability existuje více. Jedním z nejvíce intuitivních je rozdíl mezi největší a nejmenší hodnotou, který se označuje jako varianční rozpětí. Jeho hlavní výhodou je (nebo spíše dříve bývalo), že u menších souborů je rychle zjistitelné z hlavy nebo pomocí kalkulačky. To ale souvisí s jeho hlavní nevýhodou – z celého souboru dat využívá pouze dvě čísla. Může být tedy snadno ovlivněné odlehlými hodnotami.

Na obrázcích níže jsou dva soubory, jejichž varianční rozpětí je stejné, přestože je zřejmé, že hodnoty druhého souboru jsou více homogenní.

Tuto nevýhodu částečně odstraňuje kvartilové rozpětí. Jedná se o rozdíl mezi prvním a třetím kvartilem. První kvartil je hodnota, pro kterou platí, že přesně 25 % hodnot souboru je menší nebo rovno tomuto rozpětí. Pro třetí kvartil platí, že přesně 75 % hodnot je menší nebo rovno dané hodnotě. Kromě kvartilového rozpětí se někdy ještě používá kvantilové rozpětí, což je rozdíl mezi nejnižším a nejvyšším kvantilem. Níže vidíte, že kvartilové rozpětí odhalilo nižší variabilitu druhého souboru.

Základním ukazatelem variability je však rozptyl, který obvykle značíme \sigma^2. Obecně je rozptyl náhodné veličiny X definovaný vztahem

\sigma^2_X = \mathbb{E} \left( \left[ X - \mathbb{E} \left(X \right) \right]^2 \right) \, ,

tj. jako střední hodnota rozdílu mezi hodnotami veličiny X a její střední hodnotou umocněného na druhou.

Máme-li k dispozici všechny hodnoty náhodného souboru, vypočteme rozptyl pomocí vzorce

\sigma^2_X = \frac{1}{n} \sum\limits_{i=1}^{n} \left[ x_i - \mathbb{E} \left(X \right) \right]^2 \, .

Chceme-li určit rozptyl náhodného souboru, vypočteme rozdíl mezi každou hodnotou náhodného souboru a průměrem souboru a ten umocníme na druhou. Rozptyl je pak součet všech těchto hodnot.

Tento vzorec se někdy označuje jako populační rozptyl, aby se odlišil od výběrového rozptylu, který si popíšeme níže.

Vyjádřeme si hodnotu rozptylu graficky. Rozdíl mezi i-tou hodnotou a průměrem umocněný na druhou odpovídá ploše čtverce, u něhož je délka hrany rovná právě (absolutní) hodnotě tohoto rozdílu. Tyto čtverce vidíme na obrázku níže. Rozptyl je pak rovný součtu ploch jednotlivých čtverců.

rozptyl

Porovnání t-testu a z-testu

V předcházejících článcích jsme rozebírali z-test a t-test. Oba testy slouží k otestování hypotézy o střední hodnotě a liší se pouze předpokladem o znalosti rozptylu. Nabízí se ale otázka, k čemu vlastně máme dva testy? Jakou výhodu vlastně přináší znalost rozptylu? Na to se nyní podíváme.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

U obou dvou testů můžeme testovat hypotézy na stejných hladinách významnosti. Ať už tedy provedeme test pomocí z-testu nebo t-testu, můžeme si předem stanovit, že pravděpodobnost chyby 1. druhu (neoprávněného zamítnutí H_0 ) je například \alpha = 5 % . Neznalost rozptylu se ale projeví v pravděpodobnosti chyby 2. druhu, neboli v síle testu. V případě využití t-testu máme větší pravděpodobnost, že nezamítneme neplatnou H_0 .

Ukažme si to na příkladu oboustranného testu. Předpokládejme stejné hypotézy jako v předchozích článcích, tj.

  • H_0: \mu = 190 \, ,
  • H_1: \mu \neq 190 \, .

Vygenerujeme si soubor pomocí generátoru náhodných čísel. Ten nám vygeneruje čísla s požadovanými vlastnostmi. Budeme chtít data se střední hodnotou \mu = 190,35 a směrodatnou odchylkou \sigma = 0,5. Víme tedy, že nulová hypotéza neplatí. Pokud tedy nulovou hypotézu při testu zamítneme, bude náš výsledek správný. V opačném případě se dopouštíme chyby 2. druhu.

t-test-random-gen.PNG

Na obrázku níže máte vygenerovaná data a výsledky provedených testů.

t-test vs z-test

p-hodnota z-testu je 0,0196, p-hodnota t-testu je 0,1405. Na hladině významnosti \alpha = 5 % bychom tedy nulovou hypotézu zamítli pouze při použití z-testu. V případě použití t-testu bychom se dopustili chyby 2. druhu.

Soubor s výpočty si můžete stáhnout zde.

Na základě jednoho příkladu ale nejde vyvozovat nějaké obecnější závěry. Zkusme tedy komplexnější experiment. Využijeme soubor náhodných čísel, který jsme vytvořili pro analýzu síly testu z-testu.

T-test a jeho využití

Články o statistice se postupně přesunují na nový web: https://statistikajednoduse.cz/. Tento konkrétní článek najdete zde: https://statistikajednoduse.cz/t-test-a-jeho-vyuziti/.

Zásadním omezením z-testu, který jsme si popisovali minule, je nutnost znát rozptyl testovaného souboru. V realitě velikost rozptylu velmi často neznáme, a tak se musíme spokojit s jeho odhadem. V takovém případě musíme využít určitou “modifikaci” z-testu, která se nazývá t-test.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Soubor s daty i výpočty si můžete stáhnout zde: t-test.

Začněme s oboustranným t-testem. Uvažujeme následující příklad: Máme zařízení, které vyrábí součástku určité délky. Zařízení má určitou chybovost, jejíž přesnou velikost neznáme. Chyby mají normální rozdělení. Zařízení bylo nastaveno pracovníkem a my chceme ověřit, že pracovník nastavil správnou délku součástky, tj. 190 mm. Pro ověření jsme vybrali a přeměřili náhodný soubor dvaceti součástek.

Obecné principy testování hypotéz, které jsme si popsali v článku o z-testu, zůstávají v platnosti. Definujeme si tedy nulovou a alternativní hypotézu:

  • H_0: \mu = 190 \, \mathrm{mm}. (Slovně: Střední hodnota statistického souboru je 190 mm.)
  • H_0: \mu \neq 190 \, \mathrm{mm}. (Střední hodnota statistického souboru je není 190 mm.)

Statistiku získáme ze vzorce

t = \frac{\bar{x} - \mu_0}{s} \sqrt{n} \, ,

kde \bar{x} je průměr našeho vzorku, \mu_0 je teoretická (testovaná) střední hodnota, a n je rozsah náhodného výběru. Proměnná s je odhad rozptylu základního souboru a pro tento odhad využijeme výběrový rozptyl

s = \frac{\sum\limits^{n}_{i=1} (x_i -\bar{x})}{n-1} \, ,

kde x_i je i-tá hodnota v našem výběru. Jmenovatel zlomku může být pro někoho matoucí, protože bychom spíše očekávali hodnotu n. Má to však svůj dobrý důvod. Pokud bychom do jmenovatele umístili n, pak střední hodnota našeho odhadu by byla menší, než skutečná hodnota rozptylu. Blíže to popíšu v nějakém z dalších článků.

Naše statistika t nemá tentokrát normované rozdělení, ale má takzvané Studentovo neboli t rozdělení. Toto rozdělení má jeden parametr, který značíme \nu . V našem případě platí vztah

\nu = n - 1 \, .

t rozdělení má podobné vlastnosti jako normované normální: jeho střední hodnota je 0 a je symetrické kolem 0. Čím vyšší je hodnota parametru \nu , tím více se distribuční funkce t rozdělení blíží normovanému normálnímu. Často se uvádí, že u t-testu můžeme pro \nu > 30 použít normované normální rozdělení. Pokud však i pro tyto hodnoty použijeme t rozdělení, nejedná se o chybu.

Kvantilvou funkci t rozdělení s (\nu) stupni volnosti budeme značit  t_{p} (\nu). Kritický obor testu určíme ze vzorce

W = ( - \infty, t_{\frac{\alpha}{2}} \left(n-1 \right) \rangle \cup \langle t_{1-\frac{\alpha}{2}} \left( n - 1 \right), \infty ) \, ,

kde \alpha značí hladinu významnosti testu.

Nyní již víme vše, co potřebujeme, a můžeme se vrhnout na provedení testu v Excelu.

Oboustranný t-test v Excelu

Od verze 2010 obsahuje Excel přepracovanou sadu funkcí pro provádění statistických výpočtů. Používáte-li tedy verzi 2010 a vyšší, doporučuji vám tyto novější funkce využívat, protože jejich použití je v řadě případů jednodušší. Uživatelé starších verzí mají k dispozici pouze starší sadu funkcí. My si ukážeme postup pro obě varianty.

Náš testovací soubor máme uložený v buňkách A1 až A20. Test provedeme na \alpha = 5 % , tuto hodnotu máme v buňce D6.

t-test data 2