K čemu slouží z-test a jak ho provést v Excelu

V tomto článku jsem vám ukázal rozhodovací strom, pomocí kterého vyberete vhodný test pro ověření vaší hypotézy. V případě jednovýběrového z-testu uvažujeme, že máme jeden statistický soubor dat a chceme ověřit hypotézu o jeho střední hodnotě. Předpokládáme, že data pocházejí z normální rozdělení a navíc známe jejich rozptyl. Pokud rozptyl neznáme (a musíme ho odhadovat), využijeme t-test. Protože z-test je jedním z nejjednodušších statistických testů, vysvětlíme si na něm detailně, jak se statistické testování provádí, jaké má testování výstupy a jak je interpretujeme. Snažil jsem se sepsat vysvětlení co možná nejjednodušší, znalejší čtenáři jistě prominou určitá zjednodušení, kterých jsem se v textu dopustil.

Uvažujme následující příklad: Máme zařízení, které vyrábí součástku určité délky a víme, jaká je chybovost tohoto zařízení. Chybovost je nezávislá na délce součástky a odchylky od nastavené délky mají normální rozdělení. Nařízení bylo nastaveno pracovníkem a my chceme ověřit, že tento pracovník nastavil správnou délku součástky. Změříme tedy několik součástek a na základě měření rozhodneme o správnosti nastavení zařízení. Abychom mohli příklad provést na konkrétních číslech, uvažujme, že požadovaná délka je 190 mm a směrodatná odchylka délky součástek je 0,9 mm.

Při testování nejprve musíme formulovat hypotézu, která odpovídá tomu, co potřebujeme ověřit. Formulujeme vždy tzv. nulovou a alternativní hypotézu. V našem případě je máme hypotézy:

  • Nulová hypotéza: Střední hodnota statistického souboru je 190 mm.
  • Alternativní hypotéza: Střední hodnota statistického souboru není 190 mm

Je zřejmé, že jedna z těchto hypotéz musí platit. Testování hypotézy vždy provádíme na určité hladině významnosti. Než si tento pojem vysvětlíme, uvědomme si, že v závěru našeho testu můžeme udělat dvě chybná rozhodnutí:

  • Zamítneme nulovou hypotézu, i když platí. V našem případě bychom prohlásili, že pracovník nastavil zařízení špatně, i když ve skutečnosti bylo nastavené dobře. Tuto chybu nazýváme chyba 1. druhu.
  • Nezamítneme nulovou hypotézu, i když neplatí. V našem případě bychom prohlásili, že pracovník nenastavil zařízení chybně, i když nastavení ve skutečnosti chybné bylo. Takovou chybu nazýváme chyba 2. druhu.

Pravděpodobnost chyby prvního druhu si zvolíme sami a právě velikost této pravděpodobnosti nazýváme hladina významnosti. Standardně se hladina významnosti volí jako 5 % nebo 1 %. Platí, že čím nižší hladinu významnosti zvolíme, s tím větší pravděpodobností se vyslovíme pro nezamítnutí nulové hypotézy.

Každý test má svoji testovou statistiku, většinou známe její rozdělení. Na základě rozdělení a námi zvolené hladině významnosti určíme, které hodnoty statistiky znamenají nezamítnutí testové hypotézy a které již vedou k její zamítnutí. U každé statistiky víme, jakých hodnot může nabývat. Rozdělme si tyto hodnoty na dvě části: obor přijetí a kritický obor. Platí, že tyto části se nijak nepřekrývají a pokrývají veškeré hodnoty, kterých může statistika nabýt.

V případě z-testu má statistika normované normální rozdělení. Hodnota veličiny normovaného normálního rozdělení může být libovolné reálné číslo, proto na obor hodnot a kritický obor rozdělujeme celou množinu reálných čísel.

Vysvětleme si, jak se tyto hodnoty určí, na příkladu hladiny významnosti 5 %. Protože známe rozdělení statistiky, můžeme určit, jakou hodnotu bude mít tato statistika s pravděpodobností 95 %, jestliže naše nulová hypotéza platí. “Odsekněme” tedy zbývající hodnoty, které celkově nastanou s pravděpodobností 5 %. Protože normální rozdělení je symetrické, odsekáváme stejný rozsah hodnot z obou stran. Obě krajní hodnoty jsou si v absolutní hodnotě rovny. Jedna z nich je kladná a druhá záporná.

Na obrázcích níže vidíte, jak se mění rozsah oboru přijetí a kritického oboru v závislosti na hladině významnosti.

Nyní už zbývá vypočítat skutečnou hodnotu této statistiky a poté rozhodnout o zamítnutí či nezamítnutí nulové hypotézy.

A Decentralized DSGE Model

In previous articles, we went through a simple DSGE model. We computed first order conditions and steady-state equations and we ran a simulation in Dynare. Maybe some of you were confused by one thing: there was no firm in the model. We had only a representative household, we even had a production function, but this function was a part of a household budget constraint. Isn’t this strange? Where is the firm? And where is a profit maximization task? We will discuss it in this article. We will define a new DSGE model which contains both firm and household. Then we will solve it and we will run a new simulation in Dynare.

There are several ways how to define the environment of the model. This is the “standard” way which you may know from the basic economics courses: There are households and firms in the model. The households provide labor and savings to the firms and firms provide consumption goods to the households. Transactions are made on labor, capital and consumption goods markets. This is the case which we are analyzing in this article.

We could use a different definition. The household can perform the functions of the firm: it can employ adult members of the family as workers and consume the produced goods. The savings of the household are used as capital.

We could also assume that the economy contains an element which is called a benevolent social planner. The social planner has no connection to socialism, communism or any other totalitarian regime. In DSGE models, the social planner is only a formal assumption which makes the solution of the model easier. The solution of the model is exactly the same for both versions. The social planner dictates the choices of consumption to maximize the household utility. This is why we call the planner benevolent. Its only desire is the household’s welfare.

Decision Tree for Statistical Tests

Students, who study some subject about statistics, have often problems with choosing a proper statistical test for their task. To select a proper test, you need to consider following facts:

  • the hypothesis which you need to test,
  • the structure of your data (do you have one sample from one population, two samples from two populations, or even more?),
  • your knowledge about population(s) (like population distribution type, variance etc.).

I have created a decision tree in iBokse application to make these decisions easier for you. You can open the tree by clicking on a picture below.

endecisiontree

City Tour in Zagreb

As I promised in my article about EPM 2017, I am writing a post about our city tour. I am adding some photographs of the city.

Our tour started near main train station. You can see a statue of famous Croatian king Tomislav on the photo (by the way, Tomislav was also a name of our city guide). It is not a coincidence that he rides on the horse – you can find plenty of statues of other famous historical characters of Croatia. And a lot of them ride on horses. In the background, you can see Art Pavilion (Umjetnički paviljon).

DSC01684