Excel (CZ)

Dvouvýběrový t-test

V minulém článku jsme otevřeli problematiku dvouvýběrových testů, tj. testů, které mezi sebou porovnávají dva statistické soubory. Konstatovali jsme, že existují tři varianty testu a každý má určené předpoklady, při kterých jej lze použít. Nyní se budeme zabývat situací, kdy máme dva soubory, přičemž pozorování z obou souborů nelze spárovat. Soubory tedy mohou mít i odlišný počet pozorování. Předpokládáme však, že soubory mají shodné rozptyly. V takovém případě použijeme dvouvýběrový t-test, někdy též označovaný jako dvouvýběrový Studentův test.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Soubor se všemi výpočty naleznete zde.

Levostranný dvouvýběrový t-test

Abychom si přesně ukázali odlišnost od párového t-testu, vyjdeme ze zadání podobného tomu minulému: Máme data o průměrném počtu vyrobených výrobků pracovníky ve dvou různých závodech, přičemž v jednom ze závodů jsou testovány nové výrobní procesy. Vedení společnosti potřebuje ověřit, zda nové výrobní postupy zvýšily produktivitu práce, a v závislosti na tom implementuje tyto postupy v dalších závodech. Ověřte na \alpha = 5 % hypotézu, že v závodě s novými výrobními postupy vyrobí pracovníci v průměru více výrobků, než v závodě s původními postupy, přičemž předpokládáme, že rozptyl průměrného počtu výrobků je v obou závodech stejný. Vedení v minulosti statisticky ověřilo, že před změnou procesů byli pracovníci v obou závodech v průměru stejně výkonní.

Protože porovnáváme dva různé závody, nemůžeme pozorování nijak spárovat. Naopak předpokládáme shodný rozptyl hodnot, proto můžeme použít dvouvýběrový t-test.

Soubor X_1 obsahuje pozorování ze závodu se starými postupy a soubor X_2 pozorování ze závodu s upravenými postupy. Příslušné střední hodnoty pak označíme \mu_{X_1}\mu_{X_2}. Nyní můžeme formulovat nulovou a alternativní hypotézu:

  • H_0: \mu_{X_1} = \mu_{X_2} \, . (Střední hodnota obou souborů je stejná.)
  • H_1: \mu_{X_1} < \mu_{X_2} \, . (Střední hodnota prvního souboru je nižší.)

Alternativní hypotéza nám tedy říká, že pracovníci vyrábějící podle nových postupů jsou v průměru výkonnější.

Definujme si statistiku testu T jako

T = \frac{\bar{X_1} - \bar{X_2}}{s_p \cdot \sqrt{\frac{1}{n1} + \frac{1}{n2}}} \, ,

kde n_1n_2 jsou rozsahy obou souborů a s_p určíme ze vzorce

s_p = \frac{(n_1 - 1)s^2_{X_1} + (n_2 - 1)s^2_{X_2}}{n_1 + n_2 - 2} \, ,

kde s^2_{X_1}s^2_{X_2} jsou výběrové rozptyly obou souborů. Statistika T má samozřejmě Studentovo rozdělení a kritický obor určíme ze vztahu

W = ( - \infty,  t_{\alpha} (n_1 + n_2 - 2) \rangle \, ,

Dvouvýběrový t-test můžeme v Excelu opět provést několika způsoby:

  • použitím doplňku Analýza dat,
  • použitím funkce T.TEST (nebo TTEST),
  • použitím funkcí pro kvantilovou a distribuční funkci Studentova rozdělení.

Modelová data najdete na obrázku níže, rozsah dat je n_1 = 40 n_2 = 30.

dvouvýběrový t-test data

Výpočet s využitím doplňku Analýza dat

Začneme s využitím doplňku Analýza dat. Ten spustíme kliknutím na tlačítko Analýza dat na panelu Data. Vybereme možnost Dvouvýběrový t-test s rovností rozptylů. Do políček 1. soubor a 2. soubor označíme umístění našich souborů. Pokud označíme i záhlaví tabulky, zaškrtneme možnost Popisky. V poli Alfa necháme výchozí hodnotu 0,05 a do pole Výstupní oblast vložíme hranici oblasti, do které budou vloženy výsledky.

dvouvýběrový t-test analýza dat

Výsledky pro naše data jsou na obrázku níže. Hodnota statistiky je pro oba typy testu stejná a najdeme ji v řádku t Stat, v našem případě tedy T = -2{,}8239. Při jednostranném testu nás dále zajímají řádky, které jsou označeny (1).

dvouvýběrový t-test analýza dat 2

Řádek P(T<=t) (1) obsahuje p-hodnotu testu. Opět ale platí, že na tuto hodnotu si musíme dát pozor, protože nemusí vždy odpovídat našemu zadání. V doplňku totiž neurčujeme alternativní hypotézu. Excel vrací tu ze dvou možných p-hodnot, která je menší než 0,5. V našem případě (a obecně v případě záporné hodnoty statistiky, resp. v případě vyšší hodnoty průměru prvního souboru) Excel vrací p-hodnotu pro levostranný t-test, což odpovídá našemu zadání. p-hodnota testu je tedy T = 0{,}0031. V posledním označeném řádku nalezneme hranici kritického oboru. Opět platí, že hranice je zobrazena v absolutní hodnotě. V našem případě máme levostranný test, odsekáváme tedy rozdělení statistiky zleva. Protože Studentovo rozdělení je symetrické kolem nuly, stačí k zobrazené hodnotě připsat minus, tj. kritický obor se nachází v intervalu:

W = ( - \infty,  - 1,6676 \rangle \, .

Dvouvýběrové testy na střední hodnotu a párový t-test

Zatím jsme se zabývali jednovýběrovými testy. V těchto testech jsme porovnávali jeden statistický soubor s jednou konkrétní hodnotou. Často se ale porovnává několik statistických souborů vůči sobě. To znamená, že například u dvou souborů zjišťujeme, jestli některý z nich nemá větší střední hodnotu nebo rozptyl než ten druhý. Pro takový typ úloh budeme používat testy, které jsou navržené na práci s více soubory.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Začneme s dvouvýběrovými testy, tj. testy, které porovnávají právě dva soubory. Na porovnání dvou souborů s normálním rozdělením máme k dispozici hned tři testy: párový t-test, Welschův t-test a Studentův t-test. Nyní uvedu tři jednoduché otázky, pomocí kterých dokážeme vybrat správný test:

  • Jsou pozorování spárovaná, tj. dokážu jednomu konkrétnímu pozorování z prvního souboru přiřadit právě jedno konkrétní pozorování z druhého souboru? Pokud ano, volím párový t-test. Ten si popíšeme v tomto článku. Pokud ne, pokračuji dále.
  • Mají oba soubory shodný rozptyl? Pokud ano, použiji Studentův t-test.
  • Máme-li v souborech nespárovaná pozorování a mají-li oba soubory různý rozptyl, volím Welschův t-test.

Levostranný párový t-test

Uveďme si nyní typické zadání párového testu: Máme data o průměrném počtu vyrobených výrobků 20 pracovníky za jednu směnu. Vedení společnosti následně provedlo změnu výrobních procesů a pro stejných 20 pracovníků provedlo nová měření. Ověřte na hladině významnosti \alpha = 5 %, že došlo ke zvýšení průměrné produkce pracovníků.

Klíčové v zadání je, že jsme provedli 2 sady měření pro 20 stejných pracovníků. Můžeme tedy vždy spárovat dvě měření jednoho konkrétního pracovníka. Z toho důvodu můžeme zvolit párový t-test. Pokud bychom měli měření od různých pracovníků nebo pokud by měření byla anonymní, museli bychom zvolit jeden ze zbývajících dvou testů.

Označme si soubory jako X_1X_2 a jejich střední hodnoty jako \mu_{X_1}\mu_{X_2}. Nyní můžeme formulovat nulovou a alternativní hypotézu:

  • H_0: \mu_{X_1} = \mu_{X_2} \, . (Střední hodnota obou souborů je stejná.)
  • H_1: \mu_{X_1} < \mu_{X_2} \, . (Střední hodnota prvního souboru je nižší.)

Alternativní hypotézu volíme takto, protože máme dle zadání prokázat zvýšení průměrné produkce pracovníka (a předpokládáme, že snížení produktivity je nepravděpodobné). Provedeme tedy levostranný test.

Uvažujme nyní náhodnou veličinu Z, kterou si definujeme jako rozdíl náhodných veličin X_1X_2, tj. Z = X_1 - X_2. Pro každou dvojici pozorování můžeme určit z_i , které je dáno jako rozdíl pozorování, tj.

z_i = x_{1,i} - x_{2,i} \, .

Mají-li oba soubory stejnou střední hodnotu, pak by měla mít náhodná veličina Z nulovou střední hodnotu, tj. \mu_Z = 0 | H_0. Jestliže má druhý soubor větší střední hodnotu, pak má i veličina Z ostře zápornou střední hodnotu, tj. \mu_Z < 0 | H_1. Náš případ dvouvýběrového testu tedy můžeme jednoduše převést na jednovýběrový t-test provedený nad veličinou Z.

Definujme si průměr pozorování veličiny Z jako \bar{z} a výběrovou směrodatnou odchylku jako  s_{Z}. Nyní můžeme definovat statistiku testu T jako

T = \frac{\bar{z}}{s_{Z}} \sqrt{n}

a tato veličina má n - 1 stupňů volnosti. Analogicky určíme i kritický obor pro statistiku:

W = ( - \infty,  t_{\alpha} (n - 1) \rangle \, ,

kde t_{\alpha} (n - 1) je kvantil Studentova rozdělení s (n - 1) stupni volnosti.

Párový t-test můžeme v Excelu provést několika způsoby:

  • použitím doplňku Analýza dat,
  • použitím funkce T.TEST (nebo TTEST),
  • použitím funkcí pro kvantilovou a distribuční funkci Studentova rozdělení.

Soubor s ukázkovými daty i všemi výpočty si můžete stáhnout zde.

Výpočet s využitím doplňku Analýza dat

Tento doplněk jsme již používali ke generování náhodných souborů dat. Spustíte ho kliknutím na tlačítko Analýza dat na panelu Data. Pokud tam tlačítko nevidíte, musíte si doplněk nainstalovat. Po kliknutí na tlačítko se vám zobrazí seznam analytických nástrojů. Vyberte možnost Dvouvýběrový párový t-test na střední hodnotu. Analýza dat zvládá oboustranný i jednostranný párový t-test.

parovy t-test analyza dat 1

V dialogovém okně označíme oblast se dvěma soubory, a to včetně záhlaví. Pak ale nesmíme zapomenout zaškrtnout pole Popisky, čímž dáváme Excelu najevo, že v prvním řádku najde názvy datových souborů. Dále vyplníme výstupní oblast, pole Hypotetický rozdíl středních hodnot můžeme nechat prázdné.

parovy t-test analyza dat 2

Níže vidíme výsledky. Excel určil statistiku T = -2{,}4038 a p-hodnotu jako 0{,}0133. Na hodnotu na třetím řádku si ale musíme dát pozor. Obsahuje hranici kritické hodnoty, ta je ale vždy kladná. Protože my provádíme levostranný test, bude se kritický obor nacházet nalevo od nuly. K hodnotě stačí dopsat minus, protože hustota Studentova rozdělení je sudá funkce. Kritický obor vyjádřený intervalem je tedy:

W = ( - \infty,  - 1{,}7291 \rangle \,  .

parovy t-test analyza dat 3

Doplňku Analýza dat jsme nespecifikovali alternativní hypotézu. Excel u jednostranného testu vždy vrací p-hodnotu, která je menší než 0{,}5, tj. v našem případě vrací správně hodnotu pro levostranný test. Pokud by však průměr dat druhého souboru byl menší než průměr dat prvního, byla by statistika kladná a v tom případě by p-hodnota odpovídající této hodnotě musela být větší než 0{,}5. V takovém případě by bylo třeba správnou p-hodnotu dopočítat.

Využití funkce T.TEST (TTEST)

Excel obsahuje funkci T.TEST (v případě verze 2007 a starších funkci TTEST), která je další rychlou cestou k provedení párového t-testu. Její nevýhodou je, že vrací pouze p-hodnotu, nikoli však hodnotu statistiky a kritický obor.

V novějších verzích Excelu zadáme vzorec:

=T.TEST(A2:A21;B2:B21;1;1)

První dva parametry jsou odkazy na datové soubory, tentokrát již bez záhlaví. Třetí parametr zadáváme 1, protože požadujeme jednostranný test, pro oboustranný test bychom zvolili 2. Třetím parametrem volíme typ testu. Typy testů jsou specifikované na začátku článku. Pro párový test volíme 1, pro nepárový test se shodnými rozptyly 2 a pro nepárový test s různými rozptyly 3.

Tato funkce funguje podobně jako Analýza dat, tj. nezadáváme mu typ jednostranného testu a funkce vybírá tu variantu, pro kterou je p-hodnota menší než 0{,}5. Chceme-li si pojistit, že výsledek bude vždy správný, můžeme provést následující úpravu:

=KDYŽ(F12<0;T.TEST(A2:A21;B2:B21;1;1);1-T.TEST(A2:A21;B2:B21;1;1))

Pokud by tedy hodnota statistiky byla kladná, použije se jednotkový doplněk k výsledku funkce T.TEST, což je správný výsledek.

Ve starších verzích Excelu použijeme funkce TTEST, parametry volíme stejné jako u novější varianty funkce:

=TTEST(A2:A21;B2:B21;1;1)

Opět můžeme provést úpravu zaručující správný výsledek i při kladné hodnotě statistiky:

=KDYŽ(G12<0;TTEST(A2:A21;B2:B21;1;1);1-TTEST(A2:A21;B2:B21;1;1))

Manuální výpočet

Poslední variantou je manuální výpočet. Nejprve vytvoříme sloupec s rozdíly hodnot, tj. sloupec s pozorovanými hodnotami veličiny Z. Dále dopočítáme průměrný rozdíl, směrodatnou odchylku, hodnoty statistiky a určíme počet dat.

parovy t-test data a vysledky

Výpočet v MS Excel 2010 a novějším

Hranice kritického oboru určíme pomocí funkce kvantilové funkce Studentova rozdělení T.INV. Protože kritický obor určujeme zleva, zadáváme rovnou kvantil a počet stupňů volnosti:

=T.INV(F7;F2-1)

p-hodnotu testu určíme pomocí funkce distribuční funkce Studentova rozdělení T.DIST, které jako parametry zadáme hodnotu statistiky, počet stupňů volnosti a parametr PRAVDA, který říká, že chceme hodnotu distribuční funkce a nikoli funkce hustoty.

=T.DIST(F12;F2-1;PRAVDA)

V literatuře se uvádí, že pro větší objemy dat (zpravidla n \geq 30) je možné nahradit Studentovo rozdělení normálním rozdělení. Není však chybou, pokud i pro vyšší objemy dat použijeme Studentovo rozdělení.

Výpočet ve starších verzích Excelu

Ve starších verzích Excelu je manuální výpočet komplikovanější. Starší verze má funkci TINV, která nepracuje se standardním Studentovým rozdělením, ale s tzv. oboustranným Studentovým rozdělením. Toto rozdělení má má nenulovou hustotu pouze pro x > 0, přičemž hodnota hustoty je dvojnásobná oproti standardní hustotě. (Tím je splněna podmínka, že plocha pod hustotou má obsah 1.) Při určování hranice kritického oboru u oboustranného testu pak zadáváme přímo hladinu významnosti, u jednostranného testu ale musíme hodnotu hladiny významnosti násobit dvěma. Dále musíme doplnit znaménko minus, protože funkce TINV vrací vždy kladná čísla.

=-TINV(2*F7;F2-1)

Při určování p-hodnoty použijeme funkci TDIST. Tato funkce má důležitý třetí parametr, kterým určujeme, zda je použita distribuční funkce pro standardní nebo jednostranné Studentovo rozdělení. V případě jednostranného testu zadáváme 1. Komplikace je v tom, že funkce TDIST umí pracovat jen s kladnými čísly. To můžeme opět vyřešit pomocí funkce KDYŽ:

=KDYŽ(G12<0;TDIST(-G12;F2-1;1);1-TDIST(G12;F2-1;1))

Pravostranný párový t-test

Nyní si na novém datovém souboru stručně popíšeme postup pro pravostranný párový t-test. Opět se budeme pohybovat na hladině významnosti \alpha = 5 %.

Hypotézy pravostranného testu jsou:

  • H_0: \mu_{X_1} = \mu_{X_2} \, ,
  • H_1: \mu_{X_1} > \mu_{X_2} \, .

Statistika testu zůstává samozřejmě stejná, kritický obor vyjádřený intervalem pak je:

W = \langle t_{1 - \alpha} (n - 1) , \infty )  \, .

Výpočet s využitím doplňku Analýza dat

Výpočet pomocí Analýzy dat provádíme stejně jako v předchozím případě. Na obrázku níže vidíme výsledek. Hodnota statistiky testu je T = -1{,}9739. V případě pravostranného testu je kritický obor skutečně napravo od nuly a přesný zápis kritického oboru intervalem by byl

W = \langle 1{,}7291 , \infty )  \, .

parovy pravostranny t-test analyza dat

V našem případě je však špatně zobrazená p-hodnota. Protože statistika pravostranného testu je záporná, p-hodnota musí být větší než 0{,}5. Analýza dat nám zobrazuje p-hodnotu 0{,}0316, to by však byla p-hodnota pro případ levostranného testu. P-hodnota pravostranného testu je 1 - 0{,}0316= 0{,}9684.

Využití funkce T.TEST (TTEST)

Podobná záludnost jako výše nás čeká i u funkcí T.TEST a TTEST. Výše už jsme si popsali úpravu, která nám zajistí, že p-hodnota testu bude vždy správná. V případě pravostranného testu stačí malá úprava: změna znaménka nerovnosti u podmínky.

=KDYŽ(F12>0;T.TEST(A2:A21;B2:B21;1;1);1-T.TEST(A2:A21;B2:B21;1;1))

To samé platí pro funkci TTEST.

=KDYŽ(G12>0; TTEST(A2:A21;B2:B21;1;1);1- TTEST(A2:A21;B2:B21;1;1))

Manuální výpočet

Paradoxně jednoduše nyní může vypadat manuální výpočet v novějších verzích Excelu. Hranici kritického oboru určíme opět pomocí funkce T.INV, nyní však “odsekáváme” rozdělení statistiky zprava, protože jako kvantil zadáváme 1 - \alpha:

=T.INV(1-F7;F2-1)

Pro určení p-hodnoty můžeme použít funkci T.DIST.RT, což je pravostranná distribuční funkce Studentova rozdělení:

=T.DIST.RT(F12;F2-1)

Použijeme-li nám již známou funkci T.INV, musíme samozřejmě provést odečtení hodnoty od jedničky, abychom získali p-hodnotu:

=1-T.DIST(F12;F2-1;PRAVDA)

Ve starších verzích Excelu opět použijeme funkci TINV. Odebereme ale znaménko minus, protože hranice kritického oboru je nyní kladné číslo:

=TINV(2*F7;F2-1)

Pro správné určení p-hodnoty testu opět použijeme funkci KDYŽ, oproti levostrannému testu měníme znaménko nerovnosti v podmínce:

=KDYŽ(H12>0;TDIST(H12;F2-1;1);1-TDIST(-H12;F2-1;1))
parovy pravostranny t-test data a vysledky

Oboustranný párový t-test

Zbývá nám poslední varianta testu a tím je oboustranný párový t-test. V případě oboustranného testu řešíme pouze to, jestli se střední hodnoty liší nebo ne. Nerozhodujeme, který ze souborů má menší a který větší střední hodnotu. Vygenerujeme si nový datový soubor, test si ukážeme na \alpha = 5 %.

Hypotézy oboustranného testu jsou:

  • H_0: \mu_{X_1} = \mu_{X_2} \, ,
  • H_1: \mu_{X_1} \neq \mu_{X_2} \, .

Statistika testu zůstává stále stejná, kritický obor vyjádřený intervalem je:

W = ( - \infty, t_{\frac{\alpha}{2}} (n - 1) \rangle \cup \langle t_{1 - \frac{\alpha}{2}} (n - 1) , \infty )  \, .

Výpočet s využitím doplňku Analýza dat

Výpočet pomocí Analýzy dat se spouští stejně jako v předchozích případech. Ve výsledcích nás stále zajímá hodnota statistiky, která je nyní T = -2{,}3527. Dále se podíváme na poslední dva řádky, kde vidíme p-hodnotu testu a hranici kritického oboru. Studentovo rozdělení je symetrické a tak víme, že kritický obor je

W = ( - \infty, -2{,}0930 \rangle \cup \langle 2{,}0930, \infty )  \, .

Na základě p-hodnoty i na základě faktu, že hodnota statistiky se nachází v kritickém oboru, zamítáme nulovou hypotézu.

parovy oboustranny t-test analyza dat

Využití funkce T.TEST (TTEST)

Použití funkce T.TEST je v tomto případě jednoduché. Jako třetí parametr zadáváme číslo 2, které značí oboustranný test. V tomto případě není výpočet komplikovaný 2 variantami testu jako u jednostranných testů a výsledek je vždy správný.

=T.TEST(A2:A21;B2:B21;2;1)

U starší funkce TTEST platí to samé, tj. jako třetí parametr zadáváme dvojku.

=TTEST(A2:A21;B2:B21;2;1)

Manuální výpočet

Poslední možností je manuální výpočet. Pro určení hranic kritického oboru v novějších verzích Excelu použijeme opět funkce T.INV. Dolní hranici kritického oboru určíme vzorcem

=T.INV(F7/2;F2-1)

a horní hranici

=T.INV(1-F7/2;F2-1)

Všimněte si, že použití této funkce je velmi přímočaré, protože použité kvantily odpovídají těm z vzorce pro kritický obor.

P-hodnotu nejsnadněji určíme pomocí funkce T.DIST.2T, což je distribuční funkce oboustranného Studentova rozdělení. Pouze si musíme uvědomit, že tato funkce je vhodná pouze pro oboustranné testy. Funkce zadáme hodnotu statistiky (obecně v absolutní hodnotě, protože funkce pracuje jen s kladnými čísly) a získáme p-hodnotu.

=T.DIST.2T(ABS(F13);F2-1)

Pokud bychom chtěli použít klasickou distribuční funkci Studentova rozdělení, pak musíme použít následující vzorec:

=2*MIN(T.DIST(F13;F2-1;PRAVDA);1-T.DIST(F13;F2-1;PRAVDA))

Máme-li starší verzi Excelu, použijeme pro určení kritického oboru funkci TINV. Protože tato funkce pracuje s oboustranným rozdělením, zadáváme jako kvantily přímo hladinu významnosti. K dolní hranici si sami musíme doplnit znaménko minus, tj:

=-TINV(F7;F2-1)

Horní hranice je pak stejný vzorec, pouze bez znaménka minus:

=TINV(F7;F2-1)

Zbývá nám určit p-hodnotu. K tomu použijeme funkci TDIST, kde jako poslední parametr zadáváme 2. Tato funkce se pak chová stejně jako T.DIST.2T, tím pádem její výsledek už nijak neupravujeme a rovnou získáváme p-hodnotu testu.

=TDIST(ABS(H13);F2-1;2)
parovy oboustranny t-test data a vysledky

Jednovýběrový test na rozptyl

V minulých článcích jsme se zabývali testy o střední hodnotě. Střední hodnota je nejznámějším ukazatelem polohy. Ukazatele polohy charakterizují určitou úroveň hodnot v souboru. Dále se ale můžeme zajímat o to, nakolik jsou hodnoty souboru vzájemně diverzifikované. Například průměrný počet bodů z testu ve škole popisuje průměrnou úroveň znalostí studentů, rozptyl známek nám pak říká, jak velké jsou rozdíly mezi studenty. Pokud je rozptyl velký, znamená to, že jednotliví studenti se vzájemně velmi liší svými vědomostmi. U sériově vyráběných součástek výrobce často požaduje minimální rozptyl, tj. jednotlivé výroby by se měly co nejméně lišit svými rozměry, hmotností atd.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Uvažujeme následující příklad: Máme zařízení, pomocí kterého vyrábíme součástky průměrné délky 190 mm. Výrobce garantuje, že maximální rozptyl délky součástky je 0,09 mm a víme, že odchylky od nastavené délky mají normální rozdělení. Ověřte na hladině významnosti \alpha = 0{,}05, zda rozptyl délky překračuje hranici zadanou výrobcem.

Dle zadání bychom měli provést jednostranný (pravostranný) test. Reálné příklady oboustranného testu by se hledaly poměrně složitě. Většinou požadujeme větší nebo naopak menší variabilitu, než je daná hranice.

Formulujme nejprve hypotézy testu:

  • H_0: \sigma^2 = 0{,}09 \, \mathrm{mm} \, . (Slovně: Rozptyl délky je 0,09 mm.)
  • H_1: \sigma^2 > 0{,}09 \, \mathrm{mm} \, . (Slovně: Rozptyl délky je větší než 0,09 mm.)

Statistiku testu $latex T $ vypočteme ze vztahu

T = \frac{(n - 1) s^2}{\sigma_0^2} \, ,

kde n je rozsah výběru, \sigma_0^2 je teoretický (testovaný, hypotetický) rozptyl a s je výběrový rozptyl. Statistika je tedy poměrem teoretického a výběrového rozptylu, kterou násobíme rozsahem výběru. Jestliže je tedy například výběrový rozptyl výrazně větší než teoretický, má statistika relativně vysokou hodnotu. Naopak relativně nízké hodnoty svědčí o výrazně menším výběrovém rozptylu ve srovnání s teoretickým.

Statistika T má \chi^2 rozdělení. Toto rozdělení má jeden parametr, který nazýváme počet stupňů volnosti. Stupeň volnosti se rovná počtu pozorování sníženému o jedničku. Kritický obor tedy určíme pomocí kvantilů \chi^2 jako

W = \langle \chi^2_{1 - \alpha} \left( n - 1 \right), \infty ) \, .

Provedení testu v Excelu

Pro provedení testu si vygenerujeme náhodný soubor o velikosti n = 20. Soubor si vygenerujeme takový, že směrodatná odchylka \sigma^2 = 0{,}3 (rozptyl \sigma^2 = 0{,}09), tj. ve skutečnosti bude platit nulová hypotéza.

test-rozptyl data

Na následujícím obrázku si můžete prohlédnout data i výsledky výpočtů. Vidíme, že výsledek testu správný, tj. hypotézu H_0 jsme nezamítli.

test-rozptyl data a vysledky

Opět zde narážíme na rozdíly mezi staršími a novějšími verzemi Excelu. Provedeme si výpočet v obou verzích. Opět platí, že postup pro starší verzi je možné provést i v novější verzi.

K čemu slouží rozptyl a jak ho odhadujeme

V minulých článcích jsme se zabývali testy o střední hodnotě. Střední hodnota je nejznámějším ukazatelem polohy. Ukazatele polohy charakterizují určitou úroveň hodnot v souboru. Dále se ale můžeme zajímat o to, nakolik jsou hodnoty souboru diverzifikované neboli vzájemně rozdílné. To určujeme pomocí ukazatelů variability. Například průměrný počet bodů z testu ve škole popisuje průměrnou úroveň znalostí studentů. Rozptyl bodů nám pak říká, jaké jsou mezi jednotlivými studenty rozdíly. Pokud je rozptyl velký, znamená to, že jednotliví studenti se vzájemně velmi liší svými vědomostmi. Čím je rozptyl nižší, tím jsou si jednotliví studenti svými výkony bližší.

Ukazatelů variability existuje více. Jedním z nejvíce intuitivních je rozdíl mezi největší a nejmenší hodnotou, který se označuje jako varianční rozpětí. Jeho hlavní výhodou je (nebo spíše dříve bývalo), že u menších souborů je rychle zjistitelné z hlavy nebo pomocí kalkulačky. To ale souvisí s jeho hlavní nevýhodou – z celého souboru dat využívá pouze dvě čísla. Může být tedy snadno ovlivněné odlehlými hodnotami.

Na obrázcích níže jsou dva soubory, jejichž varianční rozpětí je stejné, přestože je zřejmé, že hodnoty druhého souboru jsou více homogenní.

Tuto nevýhodu částečně odstraňuje kvartilové rozpětí. Jedná se o rozdíl mezi prvním a třetím kvartilem. První kvartil je hodnota, pro kterou platí, že přesně 25 % hodnot souboru je menší nebo rovno tomuto rozpětí. Pro třetí kvartil platí, že přesně 75 % hodnot je menší nebo rovno dané hodnotě. Kromě kvartilového rozpětí se někdy ještě používá kvantilové rozpětí, což je rozdíl mezi nejnižším a nejvyšším kvantilem. Níže vidíte, že kvartilové rozpětí odhalilo nižší variabilitu druhého souboru.

Základním ukazatelem variability je však rozptyl, který obvykle značíme \sigma^2. Obecně je rozptyl náhodné veličiny X definovaný vztahem

\sigma^2_X = \mathbb{E} \left( \left[ X - \mathbb{E} \left(X \right) \right]^2 \right) \, ,

tj. jako střední hodnota rozdílu mezi hodnotami veličiny X a její střední hodnotou umocněného na druhou.

Máme-li k dispozici všechny hodnoty náhodného souboru, vypočteme rozptyl pomocí vzorce

\sigma^2_X = \frac{1}{n} \sum\limits_{i=1}^{n} \left[ x_i - \mathbb{E} \left(X \right) \right]^2 \, .

Chceme-li určit rozptyl náhodného souboru, vypočteme rozdíl mezi každou hodnotou náhodného souboru a průměrem souboru a ten umocníme na druhou. Rozptyl je pak součet všech těchto hodnot.

Tento vzorec se někdy označuje jako populační rozptyl, aby se odlišil od výběrového rozptylu, který si popíšeme níže.

Vyjádřeme si hodnotu rozptylu graficky. Rozdíl mezi i-tou hodnotou a průměrem umocněný na druhou odpovídá ploše čtverce, u něhož je délka hrany rovná právě (absolutní) hodnotě tohoto rozdílu. Tyto čtverce vidíme na obrázku níže. Rozptyl je pak rovný součtu ploch jednotlivých čtverců.

rozptyl

T-test a jeho využití

Zásadním omezením z-testu, který jsme si popisovali minule, je nutnost znát rozptyl testovaného souboru. V realitě velikost rozptylu velmi často neznáme, a tak se musíme spokojit s jeho odhadem. V takovém případě musíme využít určitou “modifikaci” z-testu, která se nazývá t-test.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Soubor s daty i výpočty si můžete stáhnout zde: t-test.

Začněme s oboustranným t-testem. Uvažujeme následující příklad: Máme zařízení, které vyrábí součástku určité délky. Zařízení má určitou chybovost, jejíž přesnou velikost neznáme. Chyby mají normální rozdělení. Zařízení bylo nastaveno pracovníkem a my chceme ověřit, že pracovník nastavil správnou délku součástky, tj. 190 mm. Pro ověření jsme vybrali a přeměřili náhodný soubor dvaceti součástek.

Obecné principy testování hypotéz, které jsme si popsali v článku o z-testu, zůstávají v platnosti. Definujeme si tedy nulovou a alternativní hypotézu:

  • H_0: \mu = 190 \, \mathrm{mm}. (Slovně: Střední hodnota statistického souboru je 190 mm.)
  • H_0: \mu \neq 190 \, \mathrm{mm}. (Střední hodnota statistického souboru je není 190 mm.)

Statistiku získáme ze vzorce

t = \frac{\bar{x} - \mu_0}{s} \sqrt{n} \, ,

kde \bar{x} je průměr našeho vzorku, \mu_0 je teoretická (testovaná) střední hodnota, a n je rozsah náhodného výběru. Proměnná s je odhad rozptylu základního souboru a pro tento odhad využijeme výběrový rozptyl

s = \frac{\sum\limits^{n}_{i=1} (x_i -\bar{x})}{n-1} \, ,

kde x_i je i-tá hodnota v našem výběru. Jmenovatel zlomku může být pro někoho matoucí, protože bychom spíše očekávali hodnotu n. Má to však svůj dobrý důvod. Pokud bychom do jmenovatele umístili n, pak střední hodnota našeho odhadu by byla menší, než skutečná hodnota rozptylu. Blíže to popíšu v nějakém z dalších článků.

Naše statistika t nemá tentokrát normované rozdělení, ale má takzvané Studentovo neboli t rozdělení. Toto rozdělení má jeden parametr, který značíme \nu . V našem případě platí vztah

\nu = n - 1 \, .

t rozdělení má podobné vlastnosti jako normované normální: jeho střední hodnota je 0 a je symetrické kolem 0. Čím vyšší je hodnota parametru \nu , tím více se distribuční funkce t rozdělení blíží normovanému normálnímu. Často se uvádí, že u t-testu můžeme pro \nu > 30 použít normované normální rozdělení. Pokud však i pro tyto hodnoty použijeme t rozdělení, nejedná se o chybu.

Kvantilvou funkci t rozdělení s (\nu) stupni volnosti budeme značit  t_{p} (\nu). Kritický obor testu určíme ze vzorce

W = ( - \infty, t_{\frac{\alpha}{2}} \left(n-1 \right) \rangle \cup \langle t_{1-\frac{\alpha}{2}} \left( n - 1 \right), \infty ) \, ,

kde \alpha značí hladinu významnosti testu.

Nyní již víme vše, co potřebujeme, a můžeme se vrhnout na provedení testu v Excelu.

Oboustranný t-test v Excelu

Od verze 2010 obsahuje Excel přepracovanou sadu funkcí pro provádění statistických výpočtů. Používáte-li tedy verzi 2010 a vyšší, doporučuji vám tyto novější funkce využívat, protože jejich použití je v řadě případů jednodušší. Uživatelé starších verzí mají k dispozici pouze starší sadu funkcí. My si ukážeme postup pro obě varianty.

Náš testovací soubor máme uložený v buňkách A1 až A20. Test provedeme na \alpha = 5 % , tuto hodnotu máme v buňce D6.

t-test data 2

Jednostranná varianta z-testu

Minule jsme se zabývali provedením z-testu v Excelu. Provedli jsme takzvaný oboustranný test. U oboustranného testu byla alternativní hypotéza zadaná nerovností, tj. alternativní hypotéza tvrdila, že střední hodnota náhodného výběru je odlišná od teoretické (testované) střední hodnoty. V našem konkrétním případě jsme testovali, zda se střední hodnota délky součástky rovná či nerovná 190 mm.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Teoreticky mohou nastat tři situace:

  1. střední hodnota délky součástky je přesně 190 mm (tj. \mu = 190 \, \mathrm{mm}),
  2. střední hodnota délky součástky je menší než 190 mm (tj. \mu < 190 \, \mathrm{mm}),
  3. střední hodnota délky součástky je větší než 190 mm (tj. \mu > 190 \, \mathrm{mm}).

Pokud je výsledek našeho testování správný (tj. nedopustíme se chyby prvního nebo druhého druhu), pak v první situaci H_0 nezamítneme a ve druhé a třetí situaci hypotézu H_0 zamítneme.

Představme si ale, že bychom mohli druhou nebo třetí situaci předem vyloučit. Uvažujme například, že zařízení nedovolí dělníkovi zadat vyšší hodnotu než 190 mm. Třetí varianta tedy nemůže nastat a my se rozhodujeme pouze mezi první a druhou variantou. V takovém případě můžeme použít jednostranný test.

Levostranný z-test

Pro přehlednost napíšu znovu celé zadání příkladu: Máme zařízení, které vyrábí součástku určité délky. Směrodatná odchylka délky součástek v důsledku chybovosti zařízení je 0,9 mm a odchylky mají normální rozdělení. Požadovaná délka součástky je 190 mm. Pracovník nemůže zadat k výrobě delší součástku, v důsledku chybného zadání ale mohou být vyráběny kratší součástky. Ověřte, zda bylo zařízení správně nastaveno.

Naše hypotézy jsou nyní následující

  • H_0: \mu = 190 \, \mathrm{mm} . (Slovně: Střední hodnota statistického souboru je 190 mm.)
  • H_1: \mu < 190 \, \mathrm{mm} . (Střední hodnota statistického souboru je menší než 190 mm.)

Statistika testu zůstává stejná:

Z = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n} \, ,

přičemž \bar{x} je průměr našeho vzorku, \mu_0 je teoretická (testovaná) střední hodnota, \sigma je směrodatná odchylka základního souboru a n je rozsah náhodného výběru. Statistika má opět normované normální rozdělení.

Liší se však kritický obor. V tomto případě není kritický obor rozdělený na dvě části. Kritický obor se kompletně nachází (v závislosti na alternativní hypotéze) v levé nebo pravé části statistiky. Kam ho umístit v našem případě? Zkusme si to logicky odvodit.

Naše alternativní hypotéza tvrdí, že skutečná střední hodnota je menší než 190 mm. Jestliže platí, pak bude s větší pravděpodobností průměr vzorku menší než 190. Nižší hodnota \bar{x} než 190 znamená, že rozdíl \bar{x} - \mu_0 je záporný. Protože \sigman jsou vždy kladné, záporná hodnota tohoto rozdílu znamená, že i hodnota statistiky je záporná. Z toho plyne, že záporné hodnoty statistiky hovoří spíše ve prospěch alternativní hypotézy. Čím je hodnota statistiky menší, tím větší tendenci máme k zamítnutí nulové hypotézy.

Proto se kritický obor se nachází v levé části souřadnicové osy. Z toho důvodu označujeme test jako levostranný. Rovněž tak se můžeme rozhodnout podle znaménka nerovnosti u alternativní hypotézy. Kritické obory pro hladinu významnosti \alpha = 5 %\alpha = 1 % \alpha = 10 % naleznete na obrázku níže.

Je důležité si uvědomit, že plocha kritického oboru je stále 0,05. Tj. hranice kritického oboru (kritická hodnota) pro stejnou hladinu významnosti je “více vpravo” oproti kritickému oboru oboustranného testu.

Jak vzniká chyba 1. a 2. druhu

Pro někoho mohou být matoucí pojmy chyba 1. druhu a chyba 2. druhu. Protože tyto pojmy mohou být pro někoho obtížně pochopitelné nebo matoucí, ukážeme si nyní podrobně, jak tyto chyby mohou vzniknout a jak se projevují. Obě chyby si ukážeme na příkladu z-testu.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Zopakujme si, jak jsou tyto chyby definované. K chybě 1. druhu dochází, jestliže zamítneme nulovou (testovanou) hypotézu, i když tato hypotéza ve skutečnosti platí. Pravděpodobnost této chyby si volíme sami a označujeme ji jako hladinu významnosti. Chyba 2. druhu nastává, pokud nezamítneme nulovou hypotézu, i když ve skutečnosti neplatí.

Stejně jako v článku o z-testu, budeme testovat hypotézu, že střední hodnota základního souboru je 190. Směrodatná odchylka, kterou známe, je 0,9. Výběr pochází z normálního rozdělení.

Ukázkový soubor si můžete stáhnout zde: chyby-při-testech.

Chyba 1. druhu

Nejprve si musíme vygenerovat hodnoty, se kterými budeme pracovat. Microsoft Excel obsahuje funkci na generování náhodných čísel s požadovaným rozdělením a vlastnostmi. Na kartě Data klikneme na tlačítko Analýza dat a poté vybereme Generátor pseudonáhodných čísel. Pokud tlačítko Analýza dat nevidíme, znamená to, že v Excelu není nainstalován doplněk Analýza dat. Ten můžeme snadno doinstalovat pomocí tohoto návodu.

Vygenerujeme si tedy 100 náhodných čísel se střední hodnotou 190 a směrodatnou odchylkou 0,9. Správné nastavení si můžete prohlédnout na obrázku níže.

chyba-1-druhu-generator

Máme nyní k dispozici základní soubor, který má střední hodnotu 190. Provedeme z toho souboru několik výběrů o rozsahu 20. Výběry vidíte na obrázku níže. V prvním případě jsme vybrali prvních 20 hodnot. Ve druhém a třetím případě vybíráme 20 nejvyšších, resp. nejnižších hodnot. Tyto výběry určitě nejsou náhodné. Důležité však je, že k výběru těchto hodnot by mohlo (byť s velmi nízkou pravděpodobností) dojít i při náhodných výběrech.

Níže vidíme p-hodnoty testu nulové hypotézy a výsledky z-testů na hladině významnosti \alpha = 5 % . Protože my ale víme, že nulová hypotéza platí, můžeme i rozhodnout o tom, zda je výsledek testu správný nebo chybný. V případě prvního výběru testovou hypotézu nezamítáme, což je správný výsledek. Při použití druhého a třetího výběru však nulovou hypotézu zamítáme, což je chybné rozhodnutí, protože nulová hypotéza platí. Jde tedy o chybu 1. druhu.

z-test chyba 1. druhu

Výběry nejvyšších nebo nejnižších hodnot jsou “extrémní” metodou výběru. To dokazuje i extrémně nízká p-hodnota textu. K chybě 1. druhu na \alpha = 5 %  by však došlo i v případě jiného výběru.

Ukážeme si nyní, že k chybě 1. druhu může dojít i v případě čistě náhodného výběru. Zkusíme navíc provést velké množství náhodných výběrů a uvidíme, že k chybě 1. druhu dochází přibližně v pěti procentech případů, což odpovídá hodnotě hladiny významnosti \alpha = 5 % .

Vygenerujeme si nyní (stejným postupem jako dříve) náhodný výběr o rozsahu 10 000 a provedeme 1 000 náhodných výběrů. K náhodnému výběru použijeme funkce INDEX a RANDBETWEEN. Funkce INDEX vybere n-tý řádek z námi zadaného pole hodnot. Číslo řádku chceme získat náhodně. K získání náhodného celého čísla použijeme funkci RANDBETWEEN pro rozsah od jedné do počtu hodnot v základním souboru, tj. 10000. Jestliže máme hodnoty ve sloupci A, výsledný vzorec vypadá takto:

=INDEX($A$1:$A$10000;RANDBETWEEN(1;$I$6))

Pro každý náhodný výběr provedeme z-test pomocí funkce z-test. Poté zjistíme počet chyb 1. druhu při testování. Použijeme funkci KDYŽ, která nám vrátí hodnotu 1, pokud došlo k chybě 1. druhu, jinak 0.

=KDYŽ(Q23>$I$4;0;1)

Poté pomocí funkcí SUMA a počet zjistíme procentuální podíl chybných výsledků ve všech provedených testech.

=SUMA(Q24:AMB24)/POČET(Q24:AMB24)

Na obrázku níže vidíme, že tento procentuální podíl skutečně vychází přibližně 5 %.

chyba-1-druhu-vysledek

V ukázkovém souboru se vám při každém opuštění buňky hodnoty přegenerují. To je způsobeno tím, že funkce RANDBETWEEN pokaždé generuje nová náhodná čísla.

Na následujícím obrázku červeně vidíte průměrnou hodnotu náhodných výběrů, pro které nulovou hypotézu zamítáme, a zeleně průměrné hodnoty výběrů, pro které ji nezamítáme. Nulovou hypotézu tedy zamítáme v případě, když je průměr náhodného výběru “příliš vzdálený” od teoretické střední hodnoty. Můžeme určit i interval pro průměr, pro který nulovou hodnotu ještě nezamítáme. Samozřejmě platí, že pro vyšší hladinu významnosti by tento interval byl širší.

z-test-stat-first-error-avg-dep

K čemu slouží z-test a jak ho provést v Excelu

V tomto článku jsem vám ukázal rozhodovací strom, pomocí kterého vyberete vhodný test pro ověření vaší hypotézy. V případě jednovýběrového z-testu uvažujeme, že máme jeden statistický soubor dat a chceme ověřit hypotézu o jeho střední hodnotě. Předpokládáme, že data pocházejí z normální rozdělení a navíc známe jejich rozptyl. Pokud rozptyl neznáme (a musíme ho odhadovat), využijeme t-test. Protože z-test je jedním z nejjednodušších statistických testů, vysvětlíme si na něm detailně, jak se statistické testování provádí, jaké má testování výstupy a jak je interpretujeme.

Pozn: Průběžně aktualizovaný přehled všech článků o statistických testech najdete v článku o rozhodovacím stromu pro statistické testy.

Uvažujme následující příklad: Máme zařízení, které vyrábí součástku určité délky a víme, jaká je chybovost tohoto zařízení. Chybovost je nezávislá na délce součástky a odchylky od nastavené délky mají normální rozdělení. Nařízení bylo nastaveno pracovníkem a my chceme ověřit, že tento pracovník nastavil správnou délku součástky. Změříme tedy několik součástek a na základě měření rozhodneme o správnosti nastavení zařízení. Abychom mohli příklad provést na konkrétních číslech, uvažujme, že požadovaná délka je 190 mm a směrodatná odchylka délky součástek je 0,9 mm.

Při testování nejprve musíme formulovat hypotézu, která odpovídá tomu, co potřebujeme ověřit. Formulujeme vždy tzv. nulovou a alternativní hypotézu. V našem případě máme hypotézy:

  • Nulová hypotéza: Střední hodnota statistického souboru je 190 mm.
  • Alternativní hypotéza: Střední hodnota statistického souboru není 190 mm

Nulová a alternativní hypotéza musí být vzájemně vždy ve sporu, tj. nikdy nemohou platit obě zároveň.

V praxi určitě nenaměříme délku přesně 190 mm, protože pozorování reality je zatíženo určitou náhodou, v našem případě je to chybovost stroje. Pointa testování hypotéz spočívá v rozhodnutí, jestli rozdíl mezi teoretickou a naměřenou hodnotou je tak velký, že už nemůže být vysvětlený náhodou. Uvažujme například, že naměříme průměr 189,5 cm. Je to důsledkem chybovosti stroje nebo důkaz jeho špatného nastavení? Přesně o tom rozhodneme pomocí testování hypotéz.

Testování můžeme zakončit dvěma způsoby:

  • Zamítneme nulovou hypotézu. To znamená, že prohlásíme, že rozdíl mezi hypotetickou střední hodnotou a skutečně naměřeným průměrem je tak velký, že s největší pravděpodobnostní nemohl být způsoben náhodou.
  • Nezamítneme nulovou hypotézu. Nikdy neříkáme, že nulovou hypotézu přijímáme. Zdůvodnění je níže.

Je zřejmé, že jedna z těchto hypotéz musí platit. Testování hypotézy vždy provádíme na určité hladině významnosti. Než si tento pojem vysvětlíme, uvědomme si, že v závěru našeho testu můžeme udělat dvě chybná rozhodnutí:

  • Zamítneme nulovou hypotézu, i když platí. V našem případě bychom prohlásili, že pracovník nastavil zařízení špatně, i když ve skutečnosti bylo nastavené dobře. Tuto chybu nazýváme chyba 1. druhu.
  • Nezamítneme nulovou hypotézu, i když neplatí. V našem případě bychom prohlásili, že pracovník nenastavil zařízení chybně, i když nastavení ve skutečnosti chybné bylo. Takovou chybu nazýváme chyba 2. druhu. Pravděpodobnost této chyby ale neznáme. Proto nepoužíváme výrok “přijímáme nulovou hypotézu”, protože u takového výroku bychom nevěděli, jak velkou pravděpodobností chyby je zatížen.

Pravděpodobnost chyby prvního druhu si zvolíme sami a právě velikost této pravděpodobnosti nazýváme hladina významnosti. Standardně se hladina významnosti volí jako 5 % nebo 1 %. Platí, že čím nižší hladinu významnosti zvolíme, s tím větší pravděpodobností se vyslovíme pro nezamítnutí nulové hypotézy.

Každý test má svoji testovou statistiku, většinou známe její rozdělení. Na základě rozdělení a námi zvolené hladině významnosti určíme, které hodnoty statistiky znamenají nezamítnutí testové hypotézy a které již vedou k její zamítnutí. U každé statistiky víme, jakých hodnot může nabývat. Rozdělme si tyto hodnoty na dvě části: obor přijetí a kritický obor. Platí, že tyto části se nijak nepřekrývají a pokrývají veškeré hodnoty, kterých může statistika nabýt.

V případě z-testu má statistika normované normální rozdělení. Hodnota veličiny normovaného normálního rozdělení může být libovolné reálné číslo, proto na obor hodnot a kritický obor rozdělujeme celou množinu reálných čísel.

Vysvětleme si, jak se tyto hodnoty určí, na příkladu hladiny významnosti 5 %. Protože známe rozdělení statistiky, můžeme určit, jakou hodnotu bude mít tato statistika s pravděpodobností 95 %, jestliže naše nulová hypotéza platí. “Odsekněme” tedy zbývající hodnoty, které celkově nastanou s pravděpodobností 5 %. Protože normální rozdělení je symetrické, odsekáváme stejný rozsah hodnot z obou stran. Obě krajní hodnoty jsou si v absolutní hodnotě rovny. Jedna z nich je kladná a druhá záporná.

Na obrázcích níže vidíte, jak se mění rozsah oboru přijetí a kritického oboru v závislosti na hladině významnosti.

Nyní už zbývá vypočítat skutečnou hodnotu této statistiky a poté rozhodnout o zamítnutí či nezamítnutí nulové hypotézy.