Porovnání t-testu a z-testu

V předcházejících článcích jsme rozebírali z-test a t-test. Oba testy slouží k otestování hypotézy o střední hodnotě a liší se pouze předpokladem o znalosti rozptylu. Nabízí se ale otázka, k čemu vlastně máme dva testy? Jakou výhodu vlastně přináší znalost rozptylu? Na to se nyní podíváme.

U obou dvou testů můžeme testovat hypotézy na stejných hladinách významnosti. Ať už tedy provedeme test pomocí z-testu nebo t-testu, můžeme si předem stanovit, že pravděpodobnost chyby 1. druhu (neoprávněného zamítnutí H_0 ) je například \alpha = 5 % . Neznalost rozptylu se ale projeví v pravděpodobnosti chyby 2. druhu, neboli v síle testu. V případě využití t-testu máme větší pravděpodobnost, že nezamítneme neplatnou H_0 .

Ukažme si to na příkladu oboustranného testu. Předpokládejme stejné hypotézy jako v předchozích článcích, tj.

  • H_0: \mu = 190 \, ,
  • H_1: \mu \neq 190 \, .

Vygenerujeme si soubor pomocí generátoru náhodných čísel. Ten nám vygeneruje čísla s požadovanými vlastnostmi. Budeme chtít data se střední hodnotou \mu = 190,35 a směrodatnou odchylkou \sigma = 0,5. Víme tedy, že nulová hypotéza neplatí. Pokud tedy nulovou hypotézu při testu zamítneme, bude náš výsledek správný. V opačném případě se dopouštíme chyby 2. druhu.

t-test-random-gen.PNG

Na obrázku níže máte vygenerovaná data a výsledky provedených testů.

t-test vs z-test

p-hodnota z-testu je 0,0196, p-hodnota t-testu je 0,1405. Na hladině významnosti \alpha = 5 % bychom tedy nulovou hypotézu zamítli pouze při použití z-testu. V případě použití t-testu bychom se dopustili chyby 2. druhu.

Soubor s výpočty si můžete stáhnout zde.

Na základě jednoho příkladu ale nejde vyvozovat nějaké obecnější závěry. Zkusme tedy komplexnější experiment. Využijeme soubor náhodných čísel, který jsme vytvořili pro analýzu síly testu z-testu.

T-test a jeho využití

Zásadním omezením z-testu, který jsme si popisovali minule, je nutnost znát rozptyl testovaného souboru. V realitě velikost rozptylu velmi často neznáme, a tak se musíme spokojit s jeho odhadem. V takovém případě musíme využít určitou “modifikaci” z-testu, která se nazývá t-test.

Soubor s daty i výpočty si můžete stáhnout zde: t-test.

Začněme s oboustranným t-testem. Uvažujeme následující příklad: Máme zařízení, které vyrábí součástku určité délky. Zařízení má určitou chybovost, jejíž přesnou velikost neznáme. Chyby mají normální rozdělení. Zařízení bylo nastaveno pracovníkem a my chceme ověřit, že pracovník nastavil správnou délku součástky, tj. 190 mm. Pro ověření jsme vybrali a přeměřili náhodný soubor dvaceti součástek.

Obecné principy testování hypotéz, které jsme si popsali v článku o z-testu, zůstávají v platnosti. Definujeme si tedy nulovou a alternativní hypotézu:

  • H_0: \mu = 190 \, \mathrm{mm}. (Slovně: Střední hodnota statistického souboru je 190 mm.)
  • H_0: \mu \neq 190 \, \mathrm{mm}. (Střední hodnota statistického souboru je není 190 mm.)

Statistiku získáme ze vzorce

t = \frac{\bar{x} - \mu_0}{s} \sqrt{n} \, ,

kde \bar{x} je průměr našeho vzorku, \mu_0 je teoretická (testovaná) střední hodnota, a n je rozsah náhodného výběru. Proměnná s je odhad rozptylu základního souboru a pro tento odhad využijeme výběrový rozptyl

s = \frac{\sum\limits^{n}_{i=1} (x_i -\bar{x})}{n-1} \, ,

kde x_i je i-tá hodnota v našem výběru. Jmenovatel zlomku může být pro někoho matoucí, protože bychom spíše očekávali hodnotu n. Má to však svůj dobrý důvod. Pokud bychom do jmenovatele umístili n, pak střední hodnota našeho odhadu by byla menší, než skutečná hodnota rozptylu. Blíže to popíšu v nějakém z dalších článků.

Naše statistika t nemá tentokrát normované rozdělení, ale má takzvané Studentovo neboli t rozdělení. Toto rozdělení má jeden parametr, který značíme \nu . V našem případě platí vztah

\nu = n - 1 \, .

t rozdělení má podobné vlastnosti jako normované normální: jeho střední hodnota je 0 a je symetrické kolem 0. Čím vyšší je hodnota parametru \nu , tím více se distribuční funkce t rozdělení blíží normovanému normálnímu. Často se uvádí, že u t-testu můžeme pro \nu > 30 použít normované normální rozdělení. Pokud však i pro tyto hodnoty použijeme t rozdělení, nejedná se o chybu.

Kvantilvou funkci t rozdělení s (\nu) stupni volnosti budeme značit  t_{p} (\nu). Kritický obor testu určíme ze vzorce

W = ( - \infty, t_{\frac{\alpha}{2}} \left(n-1 \right) \rangle \cup \langle t_{1-\frac{\alpha}{2}} \left( n - 1 \right), \infty ) \, ,

kde \alpha značí hladinu významnosti testu.

Nyní již víme vše, co potřebujeme, a můžeme se vrhnout na provedení testu v Excelu.

Oboustranný t-test v Excelu

Od verze 2010 obsahuje Excel přepracovanou sadu funkcí pro provádění statistických výpočtů. Používáte-li tedy verzi 2010 a vyšší, doporučuji vám tyto novější funkce využívat, protože jejich použití je v řadě případů jednodušší. Uživatelé starších verzí mají k dispozici pouze starší sadu funkcí. My si ukážeme postup pro obě varianty.

Náš testovací soubor máme uložený v buňkách A1 až A20. Test provedeme na \alpha = 5 % , tuto hodnotu máme v buňce D6.

t-test data 2